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B ABSTRACT
< Sufficient conditions for uniform integrabilitv in the regenerative
;%I: central limit theorem (CLT) are obtained. The result is used to show the
b~
E equality of two different representations for the variance constant
;:} appearing in the CLT, as well as to study the asymptotic moment structure
g
&y
 t; of the regenerative variance estimator.
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1. INTRODUCTION
Let X = {X(t) = t > 0} be a real-valued stochastic process

representing the output of a simulation. (To incorporate discrete-time

R

[} .

i‘f sequences (Xn: n > 0} 1into our framework, we set X(t) = x[tl’ where

N,

S: v [t] 1is the greatest integer less than or equal to t.) Suppose that X

)

N is ergodic, in the sense that there exists M4 € R such that

2

N ¢ IS

ALY - ‘

f:* (1.1) X(t) 5-% | X(s)ds => u ;

i 0 y
3

-~ o

o as t * @, Considerable attention has been focused, in the simulation e,

Cals v

g n‘l“' .

; \5 literature, on the problem of producing confidence intervals for the .

estimand ¢; this is known as the steady-state simulation problem. (See

if Chapter 8 of LAW and KELTON (1983) for details.)

Y Xs
¥
5 X e ST

S Virtually all methods proposed for the steady-state simulation problem
s require that X obey a central limit theorem; that is, there should exist \
1{: a constant ¢ for which '@
o »
e -
e 1/2 = -
) (1.2) t T (X(t) - u) => oN(0,1)
..r# -
b as t > @, Sufficient conditions for (l1.2) are well-known. In particular, &
AN E
‘u!} conditions for the validity of (1.2) are known when X 1{s regenerative L,
2 ] .
NN (SMITH (1955)), strong mixing (HALL and HEYDE (1980), pp. 127-153), R
o -
b3 ¢-mixing (BILLINGSLEY (1968), pp. 166-193) and associated (NEWMAN and R
% ;
Kol WRIGHT (1981)). 5
s L.
'Jgg Recently, several contributions to the steady-state simulation problem -
Ry .
 :§: have required a moment version of (1.2): E
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s (1.3) Bl 2&0) - w19 » senco,n¥ . P
g B
{2; Of course, relation (1.3) is a statement about uniform integrability in the h
FE% limit theorem obtained by taking the kth power of both sides of (1.2). i
?j In this paper, it is our intention to establish (1.3) for the class of g
:;;‘ regenerative processes satisfying a relatively mild moment assumption,

.Eés thereby showing that (1.3) 1s a condition which is in force for a large

fﬁ class of steady-state simulations. In particular, since general state

g*% space Markov chains can frequently be made regenerative (see ATHREYA and

1&3 NEY (1978)), the uniform integrability result obtained here applies to &

;:: larger class of simulations than one would initially expect.

aif As indicated previously, (1.3) is a limit theorem which enjoys a

?:5 number of simulation-related applications:

s (1) 1limit theory for the method of replications (see GLYNN (1986));

;$,: (11) efficiency of conditional Monte Carlo for semi-Markov processes

: o (see FOX and GLYNN (1986));

:}¥ (1i1) large-sample theory for indirect estimation via L = AW (GLYNN

, and WHITT (1986));

fgt (iv) asymptotics for control variates as applied to steady-state

i,’ simulation (see GLYNN and IGLERART (1986a));

%ig (v) 1large-sample theory for confidence intervals (GLYNN and IGLEHART

T (1986b)).

‘.:; .

555 In thie paper, we shall also present several additional applications

;:‘: of uniform integrability to simulation. Both applications concern the

a;; constant O appearing in (1.2); as is well known, estimation of ¢ 1s the

b : central problem in producing steady-state confidence intervals for .
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Loosely speaking, the first application of uniform integrability involves izﬁ

Bt

&)

showing that o has two different representations, corresponding to ”

59

whether X is viewed as a regenerative process or an (asymptotically) s

-:N L}

stationary process. The second topic concerns the asymptotic variance of L:j

':'\ :

the regenerative variance estimator for o. K
-

This paper 1s organized as follows. Section 2 {s devoted to precise Qvﬁ

L

statements of the main results of this paper, while Sections 3 to 5 con- ku'
P

tain the proofs of the results discussed in Section 2. !
i

2. STATEMENT OF MAIN RESULTS :2'

)

Let X = {X(t): t> 0} be a (possibly) delayed real-valued regenera- :j‘

tive process with regeneration times 0 < T(0) < T(l) < ... . For conveni- v

_ iy

ence, set T(-1) = 0, and let j{'
."‘.

g

T(1) .

Y, = S X(s)ds , .

T(i-1) .

T(4) o

i = f IX(s) |ds , and D

T(1-1) ‘ot

= T - TU-D) . gj;

o0

Then, if E(?l + 11) (= it is well known (see, for example SMITH v

i

(1955)) that the strong law version of (1.1) holds, namely e
i(t) il a.8. .:'

- A

as t * @ yhere ¥ = EYl/Etl. 1f, furthermore, E(f? + tf) < = then g
o

the central limit theorem (1.2) is valid (see [18]): =3
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t1/2

.
(2.1) (X(t) - u) => oN(0,1) -
LY

where o = (EZf/ETI)I/2 and z, = Y, - Wt OQur first result gives con-
ditions under which the left-hand side of (2.1) is pth moment uniformly

integrable.

(2.2) THEOREM. For p > 2, if E(?g + ?f + zg + rf) < =, then
{tp/zli(t)-ulp: t > 0} is uniformly integrable.
An immediate corollary to this result are conditions which allow one

to interchange limit and expectation in (2.1).

(2.3) COROLLARY. For p > 2, if s(?g +Y0 + <P

P
1 0 + tl) < =, then

for 0 < a < p,

ta/z

(2.4) EIX(e)-p1® » o®EINCO,1)1®

as t * =,

For p =2, (2.4) has been studied previously by CHUNG (1966), p. 102
(the proof given there in the Markov chain case easily extends to the
regenerative setting), and by SMITH (1955). Our result weakens the condi-
tions given there somewhat, and extends the result to p > 2.

We now turn to describing the first of the two applications mentioned
in Section 1. The limit theorem (2.1) shows that the constant J may be

2

computed via 0" = EZf/Etl. An alternative representation for ¢ may be

obtained by taking limits in (2.4) with p = 2:

(2.5) tz(i(t)-u)z - 02
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<2
'glrx =

*
wJ
a ‘${
fk‘ as t * @, The left~hand side of (2.5) has a particularly convenient form ?}
3 R
ﬁ.' if X is a stationary regenerative process. If X {s stationarv regener- L
~ -~ -~ :‘é‘
ol ative under P, then (E(*) denotes expectation relative to P) phy
- . .'\
o 2
4 '4':. z“
e t o
i\ - 2 sy a :
A (2.6) tE(X(e)-w)° =2 (1 "E) E((X(0)=@) * (X(s)=-u))ds -
(. 0 8
P ¥ 2\
3.'. :‘ \
o W
': Letting t + =, one would formally expect that L::
i
hﬁ v

b '
‘ ¥ = 2 [ E((R(0)-p)(X(s)-1))ds . )
e )
;.: 0 .-:
e o
.: Our first application concerns finding precise conditions under which O
b b4
: . o
?é 2 fad ﬂ-g
X (2.7) EZ/ET) = 2 | E((X(0)-#)(X(s)-H))ds <
‘AN 0 st
o s
- where P is the stationary version of the regenerative process associated NS
k3 B
k. with P. (See HEYMAN and SOBEL (1982), pp. 374-379.) )
::" :':"
‘ = <
?) (2.8) THEOREM. Suppose either that: \
" s
5¢ (1) T, has a Lebesgue density component in its distribution, X {s F“,
‘" )
qd bounded, and £t {*®, or F\:
s 1 P
? .

(11) T, has an aperiodic distribution concentrated on (1,2, ...}

"ﬁ‘-"?t:
A, -

oy

A

and E(?f + rf) <=,

s

Then, (2.7) 1is valid. &;
An important special case of Theorem 2.8 is obtained by specializing *.
(
N
to Markov processes. Let Y = {Y(t): t > 0} be an irreducible positive ~)
™~
recurrent continuous-time Markov chain on state space S © Z+ = {0,1,2, «sele 2
-— . U
Lht
)
¥
s 4

Y
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(]
A 0y
#&‘ Given a bounded real-valued function f defined on S, set X(t) = £(Y(t)). A
o, 0
'Q' For fixed 1 € S, let T(0) = inf{s.Z 0: Y(s) = 1}, T(n) = inf{s > T(n-1): E
>
ﬁz; Y(s=) # 1, Y(s)= i} for n > l. The sequence {T(n): n > 0} consti- .<¥
N 3
K) tutes regeneration times for X. Since tl has a density, Theorem 2.8 (i) ?5
\ 2
w applies and we get the following corollary. W
. ~, r
“ ':»
.jg (2.9) COROLLARY. Suppose EiT(l)3 < ®, Then 2
n“: - {
L] 8" ’
T(l) 2 ® ".;._:
~ 2.100  E (] (£(¥(s))-u)ds) /E,TAL) = 2 [ E_(£(Y(0))-B)(£(Y(s))-R)ds z
.ﬁ: 0 0 Z
J‘A. .
N N
,f: where P = E_f(X(0)) (the integral on the right-hand side of (2.10) >
’- e
N converges absolutely). e
. "
-~ 4
- Our second application concerns the regenerative estimator for the o
'-; :x
i constant ¢ appearing in (2.1). It is well known that if E(Yf + 1%) < = a
l”
T then G
" o s
R oy
- )
e ] th) - 2 S}
' e (Yk - x(t)tk) ; N(e) > 1 .
7 k=]

,:' v(t) ] ) .:
W [
) 0 3 N(e) > 0 4
; §~
! d
L) f"
1¥ 2 2 .
¥ coverges to 0" = EZI/ETl a.8.; the estimator for o 1s then given by -
-i; s(t) = v(t)l/z. To study coverage problems associated with regenerative o
P Rt
~£; confidence intervals, it is of interest to study the correlation between t;
E;! the point estimate X(t) and the standard deviation estimate s(t) (see, i,
[ '-_
FZ{ for example, BRATLEY, FOX, and SCHRAGE (1983), p. 113). A further "
L o)
?ﬁ\ interesting point involves the variability of s(t) as a function of the 4
5 -
o8 3
= o

e

ol 6 :\
» (58,
3 N}
4 .

14 oy
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¥t o
MY o
) e
Y .'.'

o8 R
R¥% ~
% regeneration state chosen. Both these questions require evaluating the r:::
oYy

}- asymptotic moment structure connecting X(t) and s(t). ;“
@ To study the asymptotic moment structure, we use a joint limit ‘
L} - ~ :‘:-:
:f theorem for X(t) and s(t); if E(t’;‘ + 1::‘) < ®, then _:_::
-, R
N
/2,3 Lk

. (2.11) t " T(X(t)-p, s(t)-0) => N(0,C) =
:‘ r:‘-
K r
:‘ where N(0,C) 1is a bivariate normal r.v. with mean vector 0 and covari- e
' kb
iy ance matrix C given by A
'g,;:
N A
R 72 -1 2 Y
b z (20) "(EA,Z, - AEZ)) 2
~ c -l 1 1“1 1 o
s B\ 2007 Y(EA, 2z, - AEZd) (46®) Y (eaZ-22eA. 2, + M2EZD) o
R 171 1 1 171 1 + 28
. —~
y - -3
o _-‘.
% where A, = zf - 0211, A = 2EZ ;T /ET. (See GLYNN and IGLEHART (1986c.) iy
o s
o« I~ Y
P The continuous mapping principle, as applied to (2.11), yields -;‘:
« AEW!
: .
(2.12) t(s(e)-0)? » c}/2N(o,1) S0

=" Y
< -~
‘-: ) \
; At
-, and "
- NN
2z (2.13) t(X(t)=#)(8(t)=0) => k(N(0,C)) N
o NS
-~ .'-h

)

2

: when k: R" * R 1is defined by k(xl,xz) - X Xy 1f the appropriate
LV, “
., uniform integrability holds, then one can pass expectations through (2.12) Ny
~ -3
-?. and (2.13), yielding :;:.
- (2.14) t!-:(s(t)-a)2 * (aaz)'l(gAf - 2kgAlzl + xzzzf) -
o e
" (2.15) tE(R(e)-0) (s(2)-0) + (20)"M(eAz, - rezd) . .
o ZN
® 3
. 7 "'-:
' G
X "
L »
35 X
£ .,

- C G PN LG

2 . P A i, m e o " »
BT - () 1, ' ’ . 1% -,
I e R R A N A T R DD LN

«

. \" .l‘f US| ..c.._
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gﬁ? In other words, the covariance matrix C does legitimately correspond to
W -
%,4 the limiting covariances associated with X(t) and s(t). This is the

content of our second application,

‘)
N ~8 ~8 8 8
L0 (2.16) THEOREM. If E(Y, + Y, + %5+ 7)) <=, then (2.14) and
O
) (2.15) are valid.
. £l
;st Empirical evidence (see [11]) indicates that the asymptotic covariance
2,
] -
J‘ﬁ (20) 1(EAlZl - AEZ%) is independent of the choice of the regeneration
e
LA
ks state. While the asymptotic variance of s(t) does depend on the regener-
-:ﬂ: ation state, the variance does not appear to be minimized by choosing the
s
:FQ state with minimal expected inter-regeneration time. Both these issues
&
o will be studied theoretically in a future paper.
'L":
K2
:Q:_ 3. PROOF OF THEOREM 2.2
it -
hiN We will show that the collection of r.v.'s A = (tp/le(t)-ulp: t > 0}
*5{5 is dominated by a uniformly integrable family, thereby showing that A 1is
\': '
el uniformly integrable.
AN
W Let N(t) = max{k 2 =1: T(k) S_t), and write
? 3
P ] N
5
h jt N(t%+2 J_'l‘(N(:)+2) N
el X (8)ds = - X (8)ds N
i o ¢ o 1 c 3
", .
i R
{j? where X (t) = X(t) - B. Then, 3
e t N(t§+2 T(N(£)+2) . 5
ot (3.1) | xc(s)dslp < (1 2|+ 125 - f X (s)ds|) _
ey 0 k=1 t y
,\.I
N(t§+2 o N
< (1 L Z b+ Up + Unceyar * Uneyen) -
N
]
2

[+ -]
22"

© mPale®

RGN Ll LR




e o
A v.
:3 . where Ui - ?i + Iul‘t + Observe that for non-negative numbers g
ey .
o ai(l £1< k), |2k a, lp < |k max ailp = kP ¢ max ars kP . --
A 1<1<k 1<1<k N
ol Ek ap, and hence it follows from (3.1) that 53
N =1 % -
SRS P
LY «
'\'E: P/2 3 P ¢ 4Pe,P/2 "“En P o uP 4 1P P 3
A (3.2) tP IR(e)=p P < 4Pet (| 2 |°+ U + U ey UN(t)+2) o
[ \ k-l i’
A ) N(t)+2 N(t)+2 :
. < Per P20 E z P+ I w). 2
[ k=1 k=0 <
W -
g We will now prove that the right-hand side of (3.2) is uniformly integra- "L
L 5
::' ble. First, observe that since E(?‘; +1';) @ it {s immediate that 4
o -
-: EUI; < ®, and so the strong law of large numbers applies, yielding j:
T 1 nil > > ,
._-":- - U hd EU 8.8, S
o "m0 K1 :
v -
o Since N(t)/t * (Etl)-l a.s., a simple argument proves that a.s. “‘
K- b
L R
AR P ;i
_ N(t)+2 EUT/E%,, p=2 s
o ¢ p/2 , % uP _,{ 1’71 1]
‘ k=0 0 , p>2.
-"‘-' I
--J:._ t
;"'_’-j The continuous mapping principle and converging-~together lemma (BILLINGSLEY : :
| AN !
o
3 ;' (1968), pp. 25 and 31) prove that !
oYy ~
o PI1NCo,1) |P + eUP/EC 2
o - N(t)+2 N(t£+2 o , 'y P = .
S (3.3) ¢ P2y f zk!p + UE) => 1 ’
e k=1 k=0 a®INCo, 1) IP . P> 2. N
|A - :
2;3313; By Corollary 2 (ii) of CHOW et al. (1979) (see also JANSON (1983), 2
.,‘.' ‘!‘.
"\ Theorem 2.3) -
-);t \-'
A4
o 2
[0 -
%?:i 9
bt -3
‘- - :
5 =
Bt -PN' o ." -f' (,'. ¢; o -"" ':{ 4: o] .._. o, ( = {“-(' '-‘ N ‘-r"c ¢_'.(-\_‘.- NSy " - "‘m > ‘.\": .(-
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YT TR

N(t)+2
P2, £} % zk}p) + PEIN(O, 1) IP .
k=1

On the other hand, Wald's identity applies to the sum in the U 's, yielding

k
N(t)+2
e ) Uﬁ) - Evg + E(N(t)+2)Euf .
k=0

The elementary renewal theorem then gives

1
0 , p>2.

N(t)+2
SETOI"

EUP/Erl, p=2
>
k=0

Consequently, the limit theorem (3.3) also holds in expectation. Thus,
Theorem 5.4 of [2] shows that the right-hand side of (3.2) is uniformly

integrable, proving the theorem.

4,  PROOF OF THEOREM 2.8

The proof has two parts; we first prove that (2.5) is valid under E
by appealing to Theorem 2.2, followed by showing that the cobvious limit
relation 1s valid on the right-hand side of (2.6).

Given that X is regenerative under P, X 1s stationary regenerative
under 5, where

(1)

(4.1) B{X € o} = 2 g{f I(X o ©

€ *)ds}
Y 10 T(0)+s

(X o et is the stochastic process {X(t+s): s > 0}). In order to apply

Theorem 2.2, we need to show that E(?g + ?f + 13 + 1%) { », The

10




'* - - J \J Y
o ¥
'l"'l “
‘,S,':.:'? ¢ l.
\ )
Wi 2
Ry distribution of X from the first cycle onwards is identical under both P =
D23 iy
(.-,."v - iy
X and P and hence e :
=
j.'ﬂ': an? 2 o
33 EYI = EYl { = -
:.')a ':!
-;:'ﬁ , ) o
B o =
N Etl Etl >, P
109 S8
X \‘. Some care is needed for the zero-th cycle, however. From (4.1), it follows
o
ney that
P o
-2 .. ) T(1) T(1) o
R P(Yy € *} = —El/ 1¢J  IX(u) ldu € *)ds} . »
Gl ET
s 1 T(0) T(0)+s
- -
-
2 Hence !
o 3
2 ¥
[ T(1) T(1)
W . An ~ .
re EY (2) E_11.'— e{f (f 1X(u) |du)2ds) < E—l‘t- E{tlYf} . "3
1 T(0) T(O)+s 1 =
l-. !I‘
i 1/3.3 , .2/33 ¢
o By Holder's inequality, E‘tlYl < E 1 *E Yl < ® by hypothe- 3
Yy ~
. 0
St sis. A similar analysis shows that "
D) .
4 Wy
e 2 1 T(1) 2 .
e, E1-’O .= E{f (T(1)-s)“ds} N
i 1 T(0) o
¢ :
"} ) g
i® 3 .
! ET) >
- ® IET
@ 3ET, S
'5' .-l
iy 33, .3
184 proving that E(Y1 + Tl) { » guffices to guarantee that ]
N i
¢ .
ooy . oA
S tE(R(£)-p)? 2 he
§ ‘.:) {
hed as t * o, s
Vi <
Nl 3
Sl =
42 3
ror 11 ~
-’ o
ol :'
[ .
"&‘i‘ -.'_.
:tl; :\ g
' [T TR T ™ - b LY 8 S S SN NN T A S0
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g‘,:zi, To prove the validity of taking formal limits in (2.6), it is enough

"!.n !

) to show that the integrand on the right-hand side of (2.6), namely

X

\“ (1 -2) E(X_(0)X _(8)) * I(s < ¢t)

S t c c - .
‘h 1.‘-) y
lrj hﬂl
oGt is absolutely dominated by an integrable function. 1In other words, we are E
. Sl .-
o o
o done if we prove that y
b *

2ed (4.2) J |Exc(0)x (s)|ds < = ,
hoot 0 c

2 Now, the left-hand side of (4.2) 1s itself dominated by

: (4.3) J |EX_(0)X (8)I(T(0) > 8)|ds + [ [|EX (0)X_(8)I(T(0) < 8)!ds .
o 0 c c 0 c c -

(R AERIE, | ¢ - L NI - L I DR N

- The first integral in (4.3) can be bounded by

et
0.;::: -, .T}O)
i | EIX_(0)X_(8) |I(T(0) > s)ds = E X, (0)X _(s) |ds .
D ' 0 0
.,._.
ae By (4.1), 3
K\ i
X ) IT(O)‘ ! 1 U‘l‘(l)’ ' I'r(l) ’ ’ )
5 E X (0)X (s){ds = =— E X (u) X (s) |ds du [
0 c e By 0 ¢ Mo © 3
T(1) 3
1 2 .
<=—E(] Ix _(u)ldu) :
—E%H r0) ¢ ]
1 2 3
< BT, !'Z(Y1 + |u|11) :
which 18 finite by hypothesis. We now turn to the second term in (4.3), p
Observe that é
b
3
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[
3
L
4
L.
4
L
4
<
:
q
L
q
L
4
:
4
1
[
1
:
1
i
]
s
1
g
i
4
g
b
]
§
i
{
i
i
i
i
i

h,

, Exc(o)xc(s)l(r(o).g )

s ~
= [ E{X_(0)X_(8)|T(0) = u} P{T(0) € du}
0 [ C

sl

3

v 3
g: s ~ -~ :" W
ot = f E{X_(0) |T(0) = u} EX (T(0)+s-u) P{T(0) € du} %
. 0 !
" 8]
= EX (0)a(s-T(0))I(T(0) < s8) , g;
' ¢ - ,,"‘:).
(] “u Y
where a(°*) = Exc(T(0)+°). Hence, EXC(O)Xc(s)I(T(O) < s) 1s absolutely ?’
dominated by E!Xc(O)a(s-T(O))lI(T(O) < 8). By Fubini's theorenm, ?
S s
R
- : j
J EIX_(0)a(s-T(0))| * I(T(0) £ s)ds é
O >

\ %
:', " ad .>:
- =EIX (0] * [ la(s-T(0))|ds | =
0)
=Efx (O} + B, g
,[v tJ"
:" o a N’g“
2 where B = fola(u) |du. Since X 1s stationary under P, it is evident E{
y that EIXC(O)I < I':({"l + IBITI)/Etl. Hence, to complete the proof of the Q"
2y
v " theorem, we need only show that B < ® under our conditions. ’{P
5 - e
 ~ Clearly, it is sufficient to prove that EX(T(0)+t) = p + 0(t 2) ;'.':E

o

under our hypotheses. Now, c(*) = EX(T(0)+°*) satisfies the renewal equa- :

s

tion c= b+ c+ F where F(dx) = P{tl € dx} and b(t) = E{X(T(0)+t) ° o

I(tl > t)}. The solution of this renewal equation is given by c = b * U, F

r

vwhere U = 2:_0 F(k) (F(k) is the kth convolution of F). Conse-
quently, the question of whether c(t) = p 4+ O(t-z) is equivalent to show-

ing that the rate of convergence of b * U to its limit u 1is O(t-z).
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L5 .
i ':‘ This question has been extensively studied. If F has a density compo-
A
Juk
"‘h!i!v nent, a sufficient condition for this relation is that (see NUMMELIN and
3N TUOMINEN (1983), Theorem 4.2)
>k
o
"'{ @ 2
) (4.4) J x° Fldx) < = .
) 0
)
t
ﬁ:_ A similar argument works for discrete-time. (To verify the conditions of
e
ot [18], note that 1if a sequence is summable, the summands must converge to
ey zero. The continuous analog is incorrect; this explains the stronger
ey
P
:’j.*, hypothesis in continuous time.)
ol
:'0‘
S.  PROOF OF THEOREM 2.15
NN -
Wi We first observe that (t(x(t)-u)zz t > 0} 1is uniformly integrable
e
‘.
.{;\ under our conditions. {Theorem 2.2,.) Note that
BN
‘-‘_ - -
58 t(X(D)-8)(s()-0) < (1/2)[e(R()-»)? + t(s(t)-0)?] ,
\':
1~ i,
:) so that the uniform integrability of {t(X(t)=-p)(s(t)-0): t > 0} will
&'ﬁ follow immediately from uniform integrability of {e(s(t)-a)%: t > 0} (see
s p. 100 of [6]).
ole,
1 To obtain uniform integrability of {t(s(t)-d)zz t > 0}, we use the
3
,-_.:j following lemma.
ASu
o
e
bl (5.1) LEMMA. For x> 0, o > 0, (x}/2-0)% < (4+a72) o (x=cD)2.
‘\-:,3
e 2 2
A PROOF. We look at two cases: x { ¢°/2 and x> 02/2. If 0<x<d"/2, 3
o 1/2__2 2 2 2,2 !
o then |x ' “=g]® < |0-g|® = 4(6°/4) < 4(x=0")°. On the other hand, if
o x > 02/2, then we use Taylor's formula to yield
P
- |
, .:-'f. .
-’.'I
.$'. 1[‘
'. [}
W N
} ~‘ ¢
1“: PNy LR X % . W BRSO LTS » wphN AT e - ..:
B R R R B e g o S R AR SRR




] i
B e
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o o

A B s R

, 1/2 2,1/2 1 2

Ix*' % = (a%) '] - Ix-0*|

R 2172

N

?‘% where & 1lies between x and 02. Since x > 02/2, it follows that -;_1
i A
::* E-I/Z < 21/2/0 and hence S__‘
: /2 'T‘
>, 1 2 1 2 KL,
e [x*% = o]® < 2 Ix=0”| Ky

X
~y

.'
ffl

... for x> 02/2. The inequality follows immediately by combining the bounds
W for the two cases.

: 2 o2 02 2
g The lemma shows that t(s(t)-0)” < (4 + 1/07)t(v(t)-0")". Our proof
) is therefore complete if we prove that {t(v(t)-dz)zz t > 0} 1is uniformly

integrable. We expand v(t) - 02 as

g N(t) N(t)

2 1 X 1

X wo - ot LY 0 sk T aa
- t k=1 gl ¥

N(t)
- 2 .1 2
, + (B=X(t))" » = § t
o t e k

l..l - "

- o2 (e-T(N(E))) /¢ .

._'._t.:,*L;_'_

2 2

i

Thus, using the inequality (Zlflail)z <k

. 2‘; a, (see Section 3) and

L

+ bz, one can bound t(v(t)-c
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N(t)
(5.2) e(v(t)-aH? ¢ 16 1 § A )?
k

-1
+32 t2(R(e)-p)*
N(t)

+ 32(4 1 %)

4

+ 16 t2(X(0)-w)8

N(t)
lf 214
+ 16(t L tk)

The second and fourth terms above are uniformly integrable, by Theorem

2.2. The uniform integrability of the sixth term is an easy consequence of
Wald's identity. For the first term, observe that

)2

(5.3) t-l(NEt) Ak)Z‘S 9¢~1[( A+

k=1 k=1 k=1

2]

N(t%+2
Uniform integrability of the first tera on the right-hand side of (5.3)
follows from Theorem 2 (i1) of [4], whereas uniform integrability of the
second term is immediate from Wald's identity.

Similar arguments hold for the remaining terms in (5.2).
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